
FPGA Based SHAKTI C-Class Verification
Omkar Bhilare

Dep. of Electronics Eng.
Veermata Jijabai Technological Institute

omkarbhilare45@gmail.com

Lavanya J
Dep. of Computer Science and Eng.

Indian Institute of Technology Madras
lavanya.jagan@gmail.com

V. Kamakoti
Dep. of Computer Science and Eng.

Indian Institute of Technology Madras
kama@cse.iitm.ac.in

Abstract—C-Class is a member of the SHAKTI family of
processors. It is an extremely configurable and commercial-
grade processor class. VAJRA is a SOC based on a 64-bit C-
class 6 stage in order core supporting RV64IMACSU extension.
Verification is a very important process in chip design. Usually,
the software RTL simulation tests on host computers take a
very large amount of time. This paper explores the possibility
of FPGA-based verification of SHAKTI processors to reduce
verification time. AAPG is a tool that is intended to generate
random RISC-V programs to test RISC-V cores. In this paper,
we ran AAPG tests on FPGA and compared the spike’s golden
signature dump with the FPGA signature dump. This paper also
explores the self checking tests generated by AAPG. Self-checking
tests have the advantage of running on FPGA or silicon without
much intervention from the host, thereby accelerating the speed
verification significantly.

Index Terms—C-Class, FPGA, RTL, AAPG, RV64IMACSU,
ISA, Verification

I. INTRODUCTION

Verification is the most crucial aspect of ASIC design.
Modern ASIC chips are very complex and contain millions
of transistors, which increases the chances of getting an error
in the chip during the design process. The goal of ASIC
verification is to make ASIC bug-free and to meet design
requirements and specifications. ASIC Verification process
is one of the crucial parts of the ASIC design process. It
consumes as much as 70-80% of the total ASIC design time.
Since modern ASICs are getting complex and complex, it
is necessary to accelerate the verification flow so that more
ASICs can be taped out in a shorter duration.

The use of FPGAs in the verification flow has been in-
creasing in recent years. To understand how FPGAs assist in
the verification flow one should understand the other industry-
standard verification methodologies. The industry uses majorly
four kinds of verification technologies, which are as follows:

• Dynamic Verification:
Dynamic Verifications are based on Software Simula-
tion. The simulation-based verification testbenches use
HVLs(Hardware Verification Languages) like System
Verilog, Python to verify the RTL Designs. Constrained-
random, Assertions, Code, and Functional Coverage are
the most popular techniques which are based on dynamic
verification technology.
Code coverage is a measure of how extensive the test-
bench is written. Functional Coverage is a verification
approach that has gained popularity in recent years.

Functional Coverage is the determination of how much
functionality of a design has been verified by the Test-
bench. Most of the time design is subjected to input which
is constrained random. Assertions are used to Flag the
error if occurred.
The main advantage of Dynamic Verification is the high
control and visibility in the flow. The bugs can be found
in the RTL code with the help of assertion and waveform
analysis. The disadvantage of Dynamic Verification is the
slow speed of software simulation.

• Static Verification:
Static verification is the process of verifying the RTL
design against some user predefined rules without exe-
cuting the design. In the early stages of ASIC, formal
verification is used to find bugs in the RTL design.
Formal Verification methods are efficient at early design
stages, but they are difficult to set up and proper experi-
ence, EDA tools are required for the same. At the later
stages of ASIC design, dynamic verification is usually
used.

• Hardware Emulation Engines:
It takes billions of verification cycles to boot an operat-
ing system and execute software applications. The high
throughput required for nowadays verification process can
only be achieved using specialized hardware engines or
FPGA prototyping. The Hardware emulation engines like
Cadence Palladium Z1 can be used for faster hardware
and software integration.
The Advantage of Hardware emulation engines is their
speed. But its major disadvantage is the cost of the actual
device.

• FPGA Prototyping:
FPGAs are the cheap alternatives to Hardware Emulation
Engines. In the last decade or so there are lots of improve-
ments happened in the FPGA market. The FPGAs are
much cheaper and state of art FPGA toolchains are very
easy to use. With the rise in the complexity of ASICs and
the increasing demand to shorten the time to the market
of a chip, FPGA prototyping remains a key solution.
The major advantage of FPGA prototyping is the fast
speed and lost cost. But the disadvantage of FPGA-based
verification is the limited control and visibility in the flow.
In this paper, we worked on developing a new FPGA
framework that has FPGAs speed advantages but as well



Comparision of RTL Verification Approach
RTL Verification Approach Speed Controllability Visiblity Cost
Dyamic and Static Verification Very Slow High Full Low
Hardware Emulation Engines Very Fast High Full Very High
FPGA Prototyping Fast Low Low Low
SHAKTI FPGA Framework Fast moderate moderate Low

TABLE I: Comparision of RTL Verification Approach

proper control and visibility are ensured in the flow with
the help of checksums, python wrapper, etc.

II. SHAKTI FPGA FRAMEWORK

SHAKTI is an open-source initiative by RISE group at IIT-
Madras with the aim to produce production grade processors,
complete System on Chips (SoCs), development boards and
SHAKTI-based software platform

Fig. 1: Shakti FPGA framework

The SHAKTI FPGA framework consists of following
things:

1) RISCV GDB:
RISCV GDB is the GNU debugger for the RISC-V
platforms. RISC-V GDB is a debugger that lets you
control the flow of assembly code which is running on
the FPGA.
In this framework, we have used the following GDB
features:

a) file Code.riscv: Selects the binary of code which
needs to be loaded into FPGA.

b) load: Loads the all sections from binary to the
FPGA.

c) break function-name: Used for creating breakpoints
in the ASM code.

d) dump binary memory mem.bin start end: Used for
Dumping the FPGA signature to the binary file
stored in host computer.

2) OpenOCD:
Open On-Chip Debugger (OpenOCD) provides an inter-

face for the RISCV-GDB to connect to the target device
(Arty A7-100T). It allows the RISC-V GDB (gdbserver)
to connect to the target processor which is running on
the FPGA.

3) JTAG Debugger:
An additional hardware device is required to allow
the Host Computer to communicate and introspect the
target hardware. These devices are often referred to
as Debugger devices or Debug adapters. The compiled
program is transferred to the target hardware using the
Debugger device. The FPGA device that we have used
has on board JTAG debugger.

4) Automated Assembly Program Generator (AAPG):
Arbitrary Assembly Program Generator (AAPG), is a
code level verification tool built in-house as part of the
Shakti Program. It generates constrained random tests
to verify RISC-V cores. It can generate normal and
self-checking tests. In normal tests, the general memory
range dump are compared between golden signature and
DUT(Device Under Test).
Self Checking tests are a feature in AAPG that setup an
assembly test with checksums placed at regular intervals
throughout the test, and the values of these checksums
are provided in a designated reference data section. The
concept of Self Checking tests arose for verification
at the Field Programmable Gate Array (FPGA) level.
Currently, one can create and use a self-checking test,
as a single entity/program to be run in the environment
needing verification and identify if the test is passing or
failing. [2]

5) AAPG On FPGA: Custom Python Wrapper
AAPG On FPGA (AOF) is a python wrapper that is used
on HOST Computer to generate tests and compare the
golden and FPGA dump.
The features of AOF as follows:

a) Extraction and Comparison of FPGA and Golden
Signature(spike) Dumps:
The Python Wrapper automatically runs
AAPGTests on the FPGA and afterward extracts
the FPGA Signature into the host computer with
the help of GDB. It also compares the FPGA and
golden signature Dump.

b) Multiple Tests Support:
The Python wrapper can also automatically run an
N number of tests one after another on the FPGA.
The Steps followed by wrapper for multiple tests
are as follows:
i) python signature.py -tests=N : Following com-



(a) Normal AAPG Tests on the FPGA (b) Self-Checking AAPG Tests on the FPGA

Fig. 2: FPGA Test Flow

mand runs N number of tests on the FPGA one
after other.

ii) The first wrapper sets up the test number 0,
runs the AAPG test on FPGA, and extracts
the Dump from FPGA. Afterward, compare the
FPGA and golden Signature dump.

iii) If both dumps are the same, then the wrapper
deletes the last test folder and set up the next
test.

iv) This is done until N-1 Tests. If any tests are fail
then they will be automatically stored in folder
named fail tests-numberfor further debugging.

c) Increases Visibility of the FPGA:
The main drawback of FPGA-based prototyping
for debugging and verification of processors is the
less visibility and control in the FPGA flow. AAPG
has a feature called Self-Checking Tests. In these
tests at regular intervals, the checksums of CPU
Status are stored in the memory of the CPU at
a particular location. This set of checksums is
nothing but a signature. The golden signature (set
of checksums) generated by spike will be always
true. The python wrapper compares the golden

signature generated by the spike to the signature
of the FPGA.
The python wrapper can detect exactly where is
the mismatch in the checksum and accordingly find
the group of instructions causing issue resulting in
more visibility and control in the verification flow.

III. AAPG TESTS ON FPGA

1) Normal AAPG Tests on the FPGAs:
AAPG is used to generate constrained random RISC-
V assembly tests. After the tests are generated AAPG
also compiles it on the Spike and generates a golden
signature dump from it. Afterward, the Python wrapper
runs the same constrained random RISC-V assembly test
on the FPGA and obtains a memory dump from the
FPGA. Both the memory dumps are compared and if
found any mismatch python wrapper points to the exact
memory address.

2) Self-Checking AAPG Tests on the FPGAs:
The config file of AAPG has a section labelled self-
checking, which contains:

a) Rate: This takes an integer in the range (1,infinity)
as input. It controls the number of instructions



between two check sums. If rate is 10, then a
checksum will be added every 10 instructions. [2]

In Self-Checking AAPG tests, these sets of checksums
are embedded in a particular part of memory. First,
the test program is run on the golden spike model
from which we get the golden signature dump. Then
python wrapper runs these Self-Checking AAPG tests
on the FPGA and extracts the set of checksums from the
memory region and compares them with the reference
golden dump. Depending on the comparison test result
is decided.

IV. RESULTS

In this paper, we have shown how FPGAs can accelerate
the traditional Verification flow.
Targeted SOC: We have tested the FPGA framework on Vajra
SOC. VAJRA(C64-A100) [3] is an SoC built around C-class.
This SoC is a single-chip 64-bit C-class micro controller with
4KB of ROM and 256MB DDR3 RAM.
Software Golden Model: We have used Spike [4], the RISC-
V ISA [5] Simulator to obtain golden signature dump.
FPGA Board: The Vajra SOC was emulated on Arty A7-100
FPGA. Arty is a ready-to-use development platform designed
around the Artix-7™ Field Programmable Gate Array (FPGA)
from Xilinx.

Fig. 3: Instruction Test

Fig. 4: Memory Dump test

These tests were run on Shakti’s Vajra SOC. The Major
Advantage of FPGA in verification flow is Speed. As shown
in Figure 3, 5,00,000 RISC-V Instruction took only 64 seconds
to run on the FPGA.
Visibility and control are required in any Verification Frame-
work. Traditional FPGA flow has usually less visibility and
control but with the help of checksums in AAPG and python
wrapper, we can see where is the mismatch.

V. FUTURE IMPROVEMENTS

Instead of using separate host machines and FPGA, in
the future, we are planning to explore Hybrid architectures
provided by Xilinx such as Zynq. The Zynq-7000 SoC family
integrates the software programmability of an ARM-based
processor with the hardware programmability of an FPGA.
In the future, we would also like to explore cloud-based
options provided by amazon like the Amazon F1 instance for
the framework.

VI. CONCLUSION

SHAKTI FPGA framework is a completely automatic sys-
tem to generate single or multiple tests suitable to run on
FPGAs. It also automatically compares golden signature and
FPGA dump. In case of a mismatch, it also gives the exact
address for further debugging. It increased the verification flow
speed as well as maintained control and visibility in the flow.

REFERENCES

[1] D. Kim, C. Celio, S. Karandikar, D. Biancolin, J. Bachrach and K.
Asanović, ”DESSERT: Debugging RTL Effectively with State Snap-
shotting for Error Replays across Trillions of Cycles,” 2018 28th
International Conference on Field Programmable Logic and Applications
(FPL), 2018, pp. 76-764, doi: 10.1109/FPL.2018.00021.

[2] ABISHEK TAIKAD SHYAMSUNDER, ”SELF CHECKING TESTS
FROM AAPG”, 2019, SHAKTI, IITM.

[3] SHAKTI, IITM, 2020, VAJRA gitlab.com/shaktiproject/sp2020/c64-
a100

[4] RISC-V foundation, 2020, RISC-V Spike, https://github.com/riscv-
software-src/riscv-isa-sim

[5] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Document Version 20191213”, Editors Andrew Waterman and Krste
Asanovi´c, RISC-V Foundation, December 2019

https://gitlab.com/shaktiproject/sp2020/-/tree/master/c64-a100
https://gitlab.com/shaktiproject/sp2020/-/tree/master/c64-a100
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim

	Introduction
	SHAKTI FPGA Framework
	AAPG Tests on FPGA
	Results
	Future Improvements
	CONCLUSION
	References

