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ECE1756: FPGA Course




e Goal: A digital circuit that computes the exponential function e”x for 16-bit fixed-point input values,




e Ideally requires 5 Multipliers and 5 Adders:

y = ((((a5x + a4)x + a3)x + a2)x + a1)x + a0
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Figure 2: Final Implementation
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But what if we have only one multiplier and adder in the system?

7 X Circuit 2: Latches one input for processing individually one after other X'} 7
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Shared HW Architecture
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V4 Circuit 1: Latches two input for processing together 77777727772
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STATE MACHINE
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Figure 14: State Machine of Shared Circuit Implementation




How it affects Power?

Transitions per Second for Different Circuit Types

clk / \ [ i 5

pipeline_ckt_1 X add1 X mult2 % &1
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pipeline_ckt_3 7 X mult2 X multl g N
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N

Figure 13: Circuit stages for baseline vs pipeline
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Expanding this idea into Term Paper for the course:

v

A survey on Multi-Context CGRASs

18t Omkar Bhilare
Dept. of Electrical and Computer Engineering,
University of Toronto
Toronto, Canada
omkar.bhilare @mail.utoronto.ca

If you have any suggestions then please let me know
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e Goal: To implement analytical placement using the Clique model and also the spreading of overused bins

based on Darav’s algorithm.

e Idea of AP: Write an Equation whose minimum is placement. (Solving the problem analytically in One Shot!)

1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 8, AUGUST 2008

Kraftwerk2—A Fast Force-Directed Quadratic
Placement Approach Using an
Accurate Net Model

Peter Spindler, Ulf Schlichtmann, Member;, IEEE, and Frank M. Johannes

Abstract—The force-directed quadratic placer “Kraftwerk2,”
as described in this paper, is based on two main concepts. First,
the force that is necessary to distribute the modules on the chip
is separated into the following lvm compnnenls' a hold force and
a move force. Both
manner. Consequently, Kranwerkz converges sllch um the mod-
ule overlap is reduced in each placement iteration. The second con-
cept of Kraftwerk2 is to use the “BmlndZBound" net model, which

the half-peri (HPWL) in
the quadratic cost function. ‘Aside from these features, this paper
presents details about Kraftwerk2. An approach to

remove halos (free space) around large modules is described, and
a method to control the module density is presented. In order
to choose the important tradeoff between runtime and quality, a
systematic quality control is shown. Furthermore, plots demon-
strating the convergence of Kraftwerk2 are presented. Results
using various benchmark suites demonstrate that Kraftwerk2
offers both high quality and excellent computational efficiency.

Index Terms—Bound2Bound, force-directed, half-perimeter
wirelength (HPWL), Kraftwerk2, quadratic placement.
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Fig. 1. Three main placement techniques and various placers.

Analytical placers define a suitable analytical cost function
for the plm.emenl pmblem and minimize the cost function
through methods ing on the
cost function, analytical placers can be subdlvnded into the

Session 4: CAD

FPGA *19, February 24-26, 2019, Seaside, CA, USA

Multi-Commodity Flow-Based Spreading in a Commercial
Analytic Placer

Nima Karimpour Darav
Microsemi Corporation
Kitchener, Ontario, Canada
nima karimpourdarav@microchip.com

Kristofer Vorwerk
Microsemi Corporation
Kitchener, Ontario, Canada
keis.vorwerk@microchip.com

ABSTRACT

Modern analytic placement tools are commonly built around the
idea of iterative Lower Bound (LB) and Upper Bound (UB) place-
ment. The LB step optimizes wirelength and timing while ignoring
overlap and cell-type constraints, whereas the UB step attempts to
spread cells and satisfy constraints without harming design qual-
ity. Top-down geometric partitioning techniques have traditionally
been used to spread cells during UB placement. We propose a new,
network flow-based approach for UB placement which does a bet-
ter job of preserving quality by optimizing the displacement of
cells from their LB positions. Our approach not only addresses cell
overlap, but also accommodates complex region constraints and
simultaneously spreads unit-sized logic, carry chains, and blocks
like RAMs and DSPs. Our technique is scalable, does not require
geometric partitioning, and is suitable for both flat and clustered
placement flows. We deployed our algorithm in a commercial FFGA
CAD flow, and show that it reduces HPWL by 6.4% on average (up
t0 22.8% in the best case) while improving worst-slack timing in
over 90% of designs, compared to a state-of-the-art alternative.

Andrew Kennings
University of Waterloo
Waterloo, Ontario, Canada
akennings@uwaterloo.ca

Arun Kundu
Microsemi Corporation
San Jose, California, USA
arun kundu@microchip.com

1 INTRODUCTION
Placement is a key component in the Computer-Aided Design
(CAD) flow in that it accounts for a majority of the runtime while
being largely responsible for overall design quality. Traditional
placement algorithms based on simulated annealing [2] or min-cut
partitioning [14] generally do not scale well, and this has led to a
significant increase in interest for analytic placement techniques.
Many analytic placers are built upon the idea of iterative LB and
UB placement. This strategy has been shown to produce competi-
tive solutions in both the Application Specific Integrated Circuit
(ASIC) [6, 11, 13] and Field Programmable Gate Array (FPGA) [9,
12,15, 16] domains. Within the LB step, several objectives—such
as wirelength and timing—are optimized while ignoring overlap
constraints and other placement restrictions. The UB step seeks
to produce a fairly non-overlapping placement with the goal of
preserving the relatve positions provided by the LB placement. To
the UB step in
many modern ASIC and FPGA placemem tools [6,9, 11-13, 15, 16]
exploits the idea of rough legalization. Full legalization and detailed
improvement are applied to further enhance the quality and satisfy
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We need estimated wirelength for Placement
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CLQUE MODEL

e Idea of Clique Model: We can convert K-Net into K(K-1)/2 Nets. (Each Nets weight
gets changed.)

A “k=4-point net” Gliqueimodel J Quadratic estimate:

_5 = e  (113)[(4-1)2 + (5-4)]

ST 1O 4 - /l S +A3)[(8-3)2+ (5-1)7]

Qs 3 -f . +(13)[(3-1)2+ (4-1)7]

3 I o > | +(1/3)[(3-1)2+ (4-3)7]

2 | \, +(1/3)[(4-3)2+ (5-3)?]

4 (= ! +(1/3)[(3-3)2+ (3-1)]

0 ?— 0 =sum of 6 weighted
<=0 1 2 3 4 x<0 1 2 3 4 2-point lengths

.



T 4 Analytical Placement
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Read the testcase
file

J

’ Part1

4

| clique_model(k_nets_blocks); | ‘

v

‘ Part 2

A4

Increase the
weights of nets

beween fixed and
moveable objects

Part 3a ’ Part 3b ’
ack x,y co-ordinates into bin |A"cm these newly computed X, ‘\"r-vl
and sort them on overuse '_as anchors (Pseudo blocks)
@m's Algorithm of Sprendi@ (:‘ Redo Math "/)
( Spreaded X, Y ) |':'. T T )
|
Y Y
Gonl _placement_ulwlatoroD

HPWL_Calc(x, y);

v

( HPWL_Calc(x, y); )

Figure 1: Flow Diagram of Assignment 2

HPWL Calc(x,y); |
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Need to Spread Placement.

3.2.3 CC3

- Most of the blocks are placed surrounding coordinates: 12, 14.
- Considering each block is of unit size, they all are overlapping.
- The HPWL in this case is 7395.24.

Figure 7: cc3 placement with ratsnet Figure 8: cc3 placement without ratsnet n
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One Option: Keep blocks connecting fixed pad weights very high

Weight=10

(0.5,0)




Figure 11: CC2: Weak weight between fixed andFigure 12: CC2: Strong weight between fixed and
variable blocks variable blocks
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One Option: Keep blocks connecting fixed pad weights very high

O T

Figure 13: CC3: Weak weight between fixed andFigure 14: CC3: Strong weight between fixed and
variable blocks variable blocks
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Second Option: Darav’s Spreading Algorithm




Second Option: Darav’s Spreading Algorithm

Figure 15: CC2: Spreading with Approach 1: Least
Figure 6: cc2 placement without ratsnet constraint method
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Figure 16: CC3: Spreading with Approach 1: Least
constraint method

Figure 8: cc3 placement without ratsnet



Still needs to actually place the cell at spreaded location!
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Place -> Spread -> Place

o | e

Figure 15: CC2: Spreading with Approach 1: Least Figure 19: CC2 Part 3B Strong
Figure 6: cc2 placement without ratsnet constraint:method



Figure 23: CC3 Part 3B Strong
I . .

n
‘ | Figure 25: CC3 Expected spread
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Figure 24: CC3 Part 3B Weak

Figure 26: Comparison of CC2 Part 3B results
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Figure 27: Analytical Placement Flow
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Storage Efficient Hardware Prefetching using
Delta-Correlating Prediction Tables

Marius Grannaes GRANNAS@IDI.NTNU.NO
Magnus Jahre JAHREQIDLNTNU.NO
Lasse Natvig LASSE@IDI.NTNU.NO

Department of Computer and Information Science
Norwegian University of Science and Technology
Sem Saelandsvei 7-9. 7491 Trondheim, Norway

Abstract

This paper presents a novel prefetching heuristic called Delta Correlating Prediction
Tables (DCPT). DCPT builds upon two previously proposed techniques, RPT prefetching
by Chen and Baer and PC/DC prefetching by Nesbit and Smith. It combines the storage-
efficient table based design of Reference Prediction Tables (RPT) with the high performance
delta correlating design of PC/DC. DCPT substantially reduces the complexity of PC/DC
prefetching by avoiding expensive pointer chasing in the GHB (Global History Buffer) and
recomputation of the delta buffer.

We evaluate this prefetcher on a simulated processor using CMPS$im and the SPEC2006
benchmarks. We show that DCPT prefetching can increase performance by up to 3.7X for
single benchmarks, while the geometric mean of speedups across all SPEC2006 benchmarks
is 42% compared to no prefetching.




Global History

Table
Address |Ptr
10
Address: 10 11 20 21 30
Index Table
DeltaSI ]. -() ]. 9 Delta Table PC Ptr
11
100
Figure 3: Example delta stream.
20
21
PC Last Last Delta Delta Delta A 30
Address Prefetch 1 n Pointer
FIFO

Figure 4: Format of a Delta Correlating Prediction Table Entry.

Figure 2: Example of a Global History Buffer.
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