o UNIVERSITY OF

% TORONTO

Student : Omkar Bhilare
Advisor : Prof. Jason Anderson

s

Introduction

Shared HW in FPGA

Placement in CAD Flow

Prefetching in Computer Architecture

Fall @ 2023

v

ECE1756
Reconfigurable
Computing and FPGA
Architecture

\4

ECE1387
CAD for Digital Circuit
Synthesis and Layout

v

ECES552
Computer
Architecture

s

Processing System
Application Processing Unit

NEON™

we |l
Cortex™-A53

recall

] Ve Ente |
V| Tece
| vt (il

DORYHAL,
LPODRY3
3084 bt WECC

25648 0CH

Graphics Processing Unit
ARM ™00 NP2

omety
Processor

Memory Management Unt

Pixel
Poessor 42

BB L2 Cache:

High-Speed
Conectivty

oo |
oo |
[raioian |
e

Scalar

Intelligent Engines

neral Connectivi
GigE
‘Vector Flozing. Functions USB20
ARN ot Ut S bt
(™ Vemory Frotecton |
Cortex™-R5 ‘ I Menagement Mutichannel DA UART
s I;zks\czne‘ B0 Cate Pover Seaure 800t - — Ed
TOMWESC | wECC WECC Menagement [VolgeTemp Timers, Quad SPINOR
i Noritor WOT, Resets
Functional NAND
| Clocking & Debu
’7 Salely TrusiZone. 5] SDleNNC
Programmable Logic
Storage & Signal Processing
General-Purpose 0 High-Speed Connectivty

Block RAM
UlraRAM

08P

High Peromance HP 10

High Dersiy HDUO.

Video Codec.

H.265/H 264

Al Engines

U
-+ Network-on-Chip ——

MIPY 112Gb/s
DOR 58GH Nx 100G 600G Direct
- - - — - - H
3.3V GPIO 32Gbvs
!
]

ECE1756: FPGA Course

e Goal: A digital circuit that computes the exponential function e”x for 16-bit fixed-point input values,

e Ideally requires 5 Multipliers and 5 Adders:

y = ((((a5x + a4)x + a3)x + a2)x + a1)x + a0

AS 1 A © A PoA : B S
Input Stage Stage Stage Stage Stage Stage Stage Stage Stage Output
Stage 1 2 3 4 5 6 7 8 9 Stage
i_valid ———> —> o_vali
CONTROL LOGIC X
o_ready «—| «—— i_ready

Figure 2: Final Implementation

y—

But what if we have only one multiplier and adder in the system?

7 X Circuit 2: Latches one input for processing individually one after other X'} 7

ckt2_latch_inputs 7 % CEBYN Y T 7 N x 2\ 77
ckt2_state X1X2X3X4X5X6X7X8X9X1OX1X2X3X4X5X6X7X8X9X1o
ckt2_outputs 272222222 Z2ZZ—Z/Z/A"xZ Y. 1 R 22?2 Z 22 Z2023li 22 .2

ckt_2_o_valid / \ /

16 16 \ x/s + ﬁ@“_’ oy

— gASH

A4IA3IA2/A1

Stage

: i n .
o:ready :)‘ Control Logic ’:i_ready Input 1 Output
Stage Stage

Shared HW Architecture

Input
Stage

16
i_x Ayl (Latches first

! :

_’

Previous
Output

A 32

Stage Output
1 Stage
ﬁ . Mul32x16 Addazps : 32
) [: oy

¥ 16

i_valid ——>

o_ready «——

—— o_valid

<«—— i_ready

FSMs + Control Logic

Figure 7: Shared circuit Implementation

y—

S I /5 I A A

i X A x 1) X2 Y4
i valid / \
V4 Circuit 1: Latches two input for processing together 77777727772
cktl_latch_inputs ZAx 1 X x 2 ¥/ T
cktl_state A1 X2X3XaXs)X6X7X8X9oXwyxny T 7%
ckt1_outputs 2777777777777 kA Xy X777,
ckt_1_o_valid [\

X Circuit 2: Latches one input for processing individually one after other ¥
we2_tawch_inputs 22X
ckee_state 74 1 X 2 X3 X a X5 X6 X7 X8X9XwX1)X2X3Xa)Xs5)Xe)X7X8)X9 X0
ckt2_outputs 2% %% % SN, % 2224y.2
ckt_2_o_valid /_\ /_
Figure 8: Optimization for multiple inputs acceptance

y—

STATE MACHINE

c1 c2
multiplier multiplier
operand operand
1 2
) i 2 -
s1 (i A5 = X[i]"AS =
s2 Xi+1] A5 A4 X('AS + Ad X[+1]'A5
s3 (i pe"‘&‘ﬁﬁ;‘“’“‘ A4 (X[II*AS + Ady*x[i] Xi+1]*AS + Ad
s4 x[i+1] pe‘"&‘;ﬁﬁ;""“‘ A3 ((X[]*AS + Ady'X()+A3 (X[+1]°AS + Ad)*xi+1]
s5 0 e A3 ((XII*AS + A4)X(I)+A3)'X(] | (H+11°AS + Ad)x[i+1])+A3
Pevious output ((((x[i*AS + Ad)*x(i])+A3)*x[i]) (((x[i+1]*AS5 +
s6 X+ ED) 2 +A2 AdyX[i+1)+A3)X(i+1]
s7 i Peviou_s. output A2 »(((((x[i]'AS + _((((x[i+1]‘A5 +
(v[i-1]) AQ)X[I)+A3)X]) +A2)2 | Adyx([i+L])+A3)X(i+1]) + A2
((((((x*AS + (((((x[+1]*AS +
s8 x[i+1] Pe"'g,‘;fﬁ;""”' Al A4)X[)+A3)X[i]) + AQ)'X[i+1)+A3)X[i+1]) +
A2)*2)+AL A2)2
; ((CCC(xri*AS + ((((((x[i+1]*AS +
s9 X pe"'&’fﬁ;‘"’“‘ Al A4)*X(i])+A3)*X{i]) + A X[i+1])+A3)*x(i+1]) +
A2)*2)+A1)x(] A2)*2)+Al
M()("()EEE()(XR];)A:[;I.) ((((((xi+1]*AS
1+, + X[i+1]*AS5 +
s10 Xi+1) Peyius pe A0 A2)*2)+AL)*X[i])+AO AQYX[i+1)+AZ)X[i+1]) +
1i-1]) sent to output A2)*2)+AL)X(i+1]
via o_valid = 1'b1
T
*X[i I+
su 0| Pe"’f‘;ﬁﬁ;""‘" A0 A2)*2)+AL)*X(i+1])+A0
Y sent to output
via 0_valid = 1'b1

Figure 14: State Machine of Shared Circuit Implementation

How it affects Power?

Transitions per Second for Different Circuit Types

clk / \ [i 5

pipeline_ckt_1 X add1 X mult2 % &1
pipeline_ckt_2 X multl X add1 z
pipeline_ckt_3 7 X mult2 X multl g N
pipeline_ckt_4 X addo X mult2 E 4
pipeline_ckt_5 7 X mult0 X addo

N

Figure 13: Circuit stages for baseline vs pipeline

Baseline Pipelined Shared HW
Circuit Type

Expanding this idea into Term Paper for the course:

v

A survey on Multi-Context CGRASs

18t Omkar Bhilare
Dept. of Electrical and Computer Engineering,
University of Toronto
Toronto, Canada
omkar.bhilare @mail.utoronto.ca

If you have any suggestions then please let me know

ECE1387: CAD Course

13

e Goal: To implement analytical placement using the Clique model and also the spreading of overused bins

based on Darav’s algorithm.

e Idea of AP: Write an Equation whose minimum is placement. (Solving the problem analytically in One Shot!)

1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 8, AUGUST 2008

Kraftwerk2—A Fast Force-Directed Quadratic
Placement Approach Using an
Accurate Net Model

Peter Spindler, Ulf Schlichtmann, Member;, IEEE, and Frank M. Johannes

Abstract—The force-directed quadratic placer “Kraftwerk2,”
as described in this paper, is based on two main concepts. First,
the force that is necessary to distribute the modules on the chip
is separated into the following lvm compnnenls' a hold force and
a move force. Both
manner. Consequently, Kranwerkz converges sllch um the mod-
ule overlap is reduced in each placement iteration. The second con-
cept of Kraftwerk2 is to use the “BmlndZBound" net model, which

the half-peri (HPWL) in
the quadratic cost function. ‘Aside from these features, this paper
presents details about Kraftwerk2. An approach to

remove halos (free space) around large modules is described, and
a method to control the module density is presented. In order
to choose the important tradeoff between runtime and quality, a
systematic quality control is shown. Furthermore, plots demon-
strating the convergence of Kraftwerk2 are presented. Results
using various benchmark suites demonstrate that Kraftwerk2
offers both high quality and excellent computational efficiency.

Index Terms—Bound2Bound, force-directed, half-perimeter
wirelength (HPWL), Kraftwerk2, quadratic placement.

Placement Technique

Stochastic Min-Cut Analytical

Timberwolf Capo’ l
Orony Nonlinear Quadratic
FengShui *l
':"’,le Partitioning Force-Directed Warping
NTUPlace’ Wl VP]’ v
vassu PROUD RQL WARP
FDP

ordian

Bonnpine FAR
AT mFAR’

Fastplace
Fig. 1. Three main placement techniques and various placers.

Analytical placers define a suitable analytical cost function
for the plm.emenl pmblem and minimize the cost function
through methods ing on the
cost function, analytical placers can be subdlvnded into the

Session 4: CAD

FPGA *19, February 24-26, 2019, Seaside, CA, USA

Multi-Commodity Flow-Based Spreading in a Commercial
Analytic Placer

Nima Karimpour Darav
Microsemi Corporation
Kitchener, Ontario, Canada
nima karimpourdarav@microchip.com

Kristofer Vorwerk
Microsemi Corporation
Kitchener, Ontario, Canada
keis.vorwerk@microchip.com

ABSTRACT

Modern analytic placement tools are commonly built around the
idea of iterative Lower Bound (LB) and Upper Bound (UB) place-
ment. The LB step optimizes wirelength and timing while ignoring
overlap and cell-type constraints, whereas the UB step attempts to
spread cells and satisfy constraints without harming design qual-
ity. Top-down geometric partitioning techniques have traditionally
been used to spread cells during UB placement. We propose a new,
network flow-based approach for UB placement which does a bet-
ter job of preserving quality by optimizing the displacement of
cells from their LB positions. Our approach not only addresses cell
overlap, but also accommodates complex region constraints and
simultaneously spreads unit-sized logic, carry chains, and blocks
like RAMs and DSPs. Our technique is scalable, does not require
geometric partitioning, and is suitable for both flat and clustered
placement flows. We deployed our algorithm in a commercial FFGA
CAD flow, and show that it reduces HPWL by 6.4% on average (up
t0 22.8% in the best case) while improving worst-slack timing in
over 90% of designs, compared to a state-of-the-art alternative.

Andrew Kennings
University of Waterloo
Waterloo, Ontario, Canada
akennings@uwaterloo.ca

Arun Kundu
Microsemi Corporation
San Jose, California, USA
arun kundu@microchip.com

1 INTRODUCTION
Placement is a key component in the Computer-Aided Design
(CAD) flow in that it accounts for a majority of the runtime while
being largely responsible for overall design quality. Traditional
placement algorithms based on simulated annealing [2] or min-cut
partitioning [14] generally do not scale well, and this has led to a
significant increase in interest for analytic placement techniques.
Many analytic placers are built upon the idea of iterative LB and
UB placement. This strategy has been shown to produce competi-
tive solutions in both the Application Specific Integrated Circuit
(ASIC) [6, 11, 13] and Field Programmable Gate Array (FPGA) [9,
12,15, 16] domains. Within the LB step, several objectives—such
as wirelength and timing—are optimized while ignoring overlap
constraints and other placement restrictions. The UB step seeks
to produce a fairly non-overlapping placement with the goal of
preserving the relatve positions provided by the LB placement. To
the UB step in
many modern ASIC and FPGA placemem tools [6,9, 11-13, 15, 16]
exploits the idea of rough legalization. Full legalization and detailed
improvement are applied to further enhance the quality and satisfy

CAD FLOW

3. MaioY Steps © }\A%\ Logjc % Layout-

/ﬂ’yh Aevel 574#%1‘5

® Soffware-like Representuh o
oF behawiowv
® No Clocx (UnﬁmeJ) #

® €9: ¢/c+t (ode [;:_:'3

(Anocahan + 9Cheduling + B;namﬁ VHoL

Timed
/(]\ [oftimized

T(Meda »
(torger)

[Bﬁcke-wo of]
CAD Fiow.
Logrc Synthes's /Ca«/aw Synihesis
, ® ﬁ(ﬁﬁoning
o F5m oprimization [Em“qﬁ'”} um o Placemenk
o Synchronus Optimization Jla;‘" = R“""J [““W] =)6|+6’Ntar1
. ‘l"‘ OPHM"“H‘Q.- (x-mae Reducion) 0s-1|
o Tedwob m"?’ : Ve Hist
lewviloq 10 _—
a m.: % Lts N' 'J
OPvimized o/p 'Hm
y /ﬁ\
Ffs
(hak 5
T(Media ' Fr:g:m 1I(Medfa_
T |.)
(tome) i o
DorP

S

We need estimated wirelength for Placement

L&)M ‘\S WL‘ i acom , A “4-point net”
\Meapare c& brwe owke< LOL:? Ere—
4 o] ||

\ 4 e 1 ! r
G pias e A

T %M\ e et

x<0 1 2 3 4
- . ot
c,c,_\g\-%.;éf (:S“itﬁ;;”"ﬁ“hwb G{’s‘uﬂ_ (owhed Wl Understatement
for 4+ Nets
HPWL

CLQUE MODEL

e Idea of Clique Model: We can convert K-Net into K(K-1)/2 Nets. (Each Nets weight
gets changed.)

A “k=4-point net” Gliqueimodel J Quadratic estimate:

_5 = e (113)[(4-1)2 + (5-4)]

ST 1O 4 - /l S +A3)[(8-3)2+ (5-1)7]

Qs 3 -f . +(13)[(3-1)2+ (4-1)7]

3 I o > | +(1/3)[(3-1)2+ (4-3)7]

2 | \, +(1/3)[(4-3)2+ (5-3)?]

4 (= ! +(1/3)[(3-3)2+ (3-1)]

0 ?— 0 =sum of 6 weighted
<=0 1 2 3 4 x<0 1 2 3 4 2-point lengths

.

T 4 Analytical Placement

N Connectivit = « 2 3
/V?Zt‘s matz“i:xVJ a5 «Jo t os :f
& - total weight of the wives C = 14 © 0 ©
L “Dmecting gutat s and J “3slos 0 o0 5
4 Cq=0 wlos 0 15 o
slll ,Q\ ‘("0}) AX = g‘ Ag :g}
(0.0.‘) » AN (’ A = -
N 230+ 2 W :
A“ “21 ‘J Z PGJ.a‘h
(0]
0 gate X
1 net

Read the testcase
file

J

’ Part1

4

| clique_model(k_nets_blocks); | ‘

v

‘ Part 2

A4

Increase the
weights of nets

beween fixed and
moveable objects

Part 3a ’ Part 3b ’
ack x,y co-ordinates into bin |A"cm these newly computed X, ‘\"r-vl
and sort them on overuse '_as anchors (Pseudo blocks)
@m's Algorithm of Sprendi@ (:‘ Redo Math "/)
(Spreaded X, Y) |':'. T T)
|
Y Y
Gonl _placement_ulwlatoroD

HPWL_Calc(x, y);

v

(HPWL_Calc(x, y);)

Figure 1: Flow Diagram of Assignment 2

HPWL Calc(x,y); |

A

Need to Spread Placement.

3.2.3 CC3

- Most of the blocks are placed surrounding coordinates: 12, 14.
- Considering each block is of unit size, they all are overlapping.
- The HPWL in this case is 7395.24.

Figure 7: cc3 placement with ratsnet Figure 8: cc3 placement without ratsnet n

4

One Option: Keep blocks connecting fixed pad weights very high

Weight=10

(0.5,0)

Figure 11: CC2: Weak weight between fixed andFigure 12: CC2: Strong weight between fixed and
variable blocks variable blocks

. 4

One Option: Keep blocks connecting fixed pad weights very high

O T

Figure 13: CC3: Weak weight between fixed andFigure 14: CC3: Strong weight between fixed and
variable blocks variable blocks

4

Second Option: Darav’s Spreading Algorithm

Second Option: Darav’s Spreading Algorithm

Figure 15: CC2: Spreading with Approach 1: Least
Figure 6: cc2 placement without ratsnet constraint method

| SRR E . B ,
y U yExX

Figure 16: CC3: Spreading with Approach 1: Least
constraint method

Figure 8: cc3 placement without ratsnet

Still needs to actually place the cell at spreaded location!
\mﬁ‘c.uvl
celll z Sma.,QJL> Hirein

/{SMDM/IQ/B},M° oven AP
I ooy

t

KA S()rg& locekion O{ C_Q/[G

X-is‘wem'l J u).tgqfe—ﬁ.é

S

Place -> Spread -> Place

o | e

Figure 15: CC2: Spreading with Approach 1: Least Figure 19: CC2 Part 3B Strong
Figure 6: cc2 placement without ratsnet constraint:method

Figure 23: CC3 Part 3B Strong
I . .

n
‘ | Figure 25: CC3 Expected spread
‘ n
] ™
W .

Figure 24: CC3 Part 3B Weak

Figure 26: Comparison of CC2 Part 3B results

O\,{/\Q_QQ AP ¢ o)

Adsut weights
528 neh umadel

\\0

Figure 27: Analytical Placement Flow

Journal of Instruction-Level Parallelism 13 (2011) 1-16 Submitted 3/10; published 1/11

Storage Efficient Hardware Prefetching using
Delta-Correlating Prediction Tables

Marius Grannaes GRANNAS@IDI.NTNU.NO
Magnus Jahre JAHREQIDLNTNU.NO
Lasse Natvig LASSE@IDI.NTNU.NO

Department of Computer and Information Science
Norwegian University of Science and Technology
Sem Saelandsvei 7-9. 7491 Trondheim, Norway

Abstract

This paper presents a novel prefetching heuristic called Delta Correlating Prediction
Tables (DCPT). DCPT builds upon two previously proposed techniques, RPT prefetching
by Chen and Baer and PC/DC prefetching by Nesbit and Smith. It combines the storage-
efficient table based design of Reference Prediction Tables (RPT) with the high performance
delta correlating design of PC/DC. DCPT substantially reduces the complexity of PC/DC
prefetching by avoiding expensive pointer chasing in the GHB (Global History Buffer) and
recomputation of the delta buffer.

We evaluate this prefetcher on a simulated processor using CMPS$im and the SPEC2006
benchmarks. We show that DCPT prefetching can increase performance by up to 3.7X for
single benchmarks, while the geometric mean of speedups across all SPEC2006 benchmarks
is 42% compared to no prefetching.

Global History

Table
Address |Ptr
10
Address: 10 11 20 21 30
Index Table
DeltaSI]. -()]. 9 Delta Table PC Ptr
11
100
Figure 3: Example delta stream.
20
21
PC Last Last Delta Delta Delta A 30
Address Prefetch 1 n Pointer
FIFO

Figure 4: Format of a Delta Correlating Prediction Table Entry.

Figure 2: Example of a Global History Buffer.

THANK YOU

