J 437-669-2977 womkar.bhilare@mail.utoronto.ca in linkedin.com/in/omkar → 100 m/s in/omkar

Omkar Bhilare

github.com/omkar ombhilare999.github.io
mbhilare999.github.io/CV

Summary — I combine research, industry, teaching experience, and hands-on projects to address complex problems in hardware architectural design, verification, CAD optimization, and FPGA applications for scalable digital systems.

Education

University of Toronto (UofT), Toronto, Canada

Masters in Applied Science (MASc) in ECE [GPA: 3.8/4]

Advisor: Prof. Jason Anderson September 2023 - Present

- → Relevant Coursework: ECE552 (Computer Arch.) || ECE1718 (Advanced Computer Arch.) || ECE1756 (Reconfigurable Computing & FPGA Arch.) || ECE1755 (Parallel Computer Arch. & Prog.) || ECE1387 (CAD for Digital Circuits Synthesis)
- → **Teaching Experience:** ECE1387: CAD for Digital Circuits [**Fall"24**] || ECE 532: Digital Systems Design [**Winter"24**] [**Summer"24**] [**W"25**] || CSC258: Computer Organization [**F"24**] || ECE 241: Digital Systems [**F"23**] [**F"24**]

Bachelor's in Engineering (EE), VJTI, Mumbai, India [GPA: 9.13/10]

July 2019 - May 2022

Publications

[1] H. Wei, O. Bhilare, H. Waqar, J.H. Anderson, "CAD Techniques for NoC-Connected Multi-CGRA Systems," HEART '24

[link]

[link]

[2] O. Bhilare, et al., "DEEPFAKE CLI: Accelerated Deepfake Detection Using FPGAs," PDCAT 2022

Projects

Determining and bridging Area gap between ASIC and CGRA (Master's Thesis)

Aug 2024 - Present

- → Analyzing programmability costs in modern CGRA architectures by comparing Power, Performance, and Area results from diverse benchmark suites run on both ASIC and CGRA platforms
- ightarrow Conducting architectural exploration to identify trade-offs between programmability and performance in CGRA designs
- → Bridging the power gap in CGRA architectures by leveraging fracturable processing elements and analyzing their impact on Performance and Area (*Work-in-progress*)

NoC-Connected Multi-CGRA Systems

Jan 2024 - May 2024

- → Developed a partitioning-based CAD flow for NoC-connected large CGRAs, reducing run time by 33× compared to traditional CAD methods
- → Integrated and customized an open-source min-cut partitioner, TritonPart, to fit specific CGRA CAD requirements
- → Enhanced CAD flexibility with a multi-stage framework, enabling the use of advanced mapping algorithms alongside the partitioning stage, simplifying CAD exploration for large CGRAs

Research Experience

Processor Architecture Laboratory (LAP), EPFL, Switzerland Summer@EPFL

Prof. Paolo Ienne, Mr. Andrea Guerrieri *June 2022 - August 2022*

- → Developed a framework to enable Dynamatic (a dynamic HLS compiler) to access a multi-cycle memory system via a custom AXI interconnect, integrated with Dynamatic's out-of-order load-store queues (LSQs)
- ightarrow Added burst support within Dynamatic's elastic environment using a custom Burst & Outstanding Manager (BOM) module
- → Enhanced memory accessing capabilities of Dynamatic with only a 2% increase in LUT and a 4% in FF usage

Shakti Lab, RISE Group, IIT Madras, India

Research Verification Intern [REPORT]

Prof. V. Kamakoti, Mrs. Lavanya J March 2021 - July 2021

- → Designed and developed a framework for verifying SHAKTI, India's first indigenous RISC-V processor family, on FPGAs
- → To verify the processor, the framework produces random assembly tests, executes them on a softcore processor on an FPGA, and compares the execution signatures from FPGA with the golden signature from Spike, an ISA emulator
- → The framework enhanced verification speed, executing 500k RISC-V instructions in just 64 seconds on the FPGA softcore— a process that would need hours in conventional techniques— while preserving visibility and control within the flow

Work Experience

AMD Bangalore, India

Co-Op + Silicon Design Engineer I

Dec 2021 - July 2023

- \rightarrow Contributed to SoC-level verification of Design for Debug (DFD) IPs in 3 AMD processors, aiding in successful tapeouts
- → Verified debug infrastructure in IPs, including USB, memory, and CPU cores, etc., using constrained-random test cases, ensuring functional correctness
- ightarrow Developed and ported a verification testsuite for DFD IPs across AMD processors, ensuring maximum test coverage **Skills**

Language: Verilog, VHDL, C, C++, Python **Systems:** Git, Linux

EDA Tools: Quartus Prime, Xilinx Vivado, Microchip Libero, Yosys, Icarus Verilog, Synopsys Design Compiler, Cadence Innovus